
Dependencies, Instruction
Scheduling, Optimization, and

Parallelism
Prof. James L. Frankel

Harvard University

Version of 7:06 PM 5-Dec-2023
Copyright © 2023, 2022, 2020, 2018, 2016 James L. Frankel. All rights reserved.

Ordering of Execution of Instructions

• Although written by the programmer in a particular way, the language
allows execution in another order so long as it meets the as-if
constraint

• A different order may allow faster execution because of
• Delay slots

• Pipelining advantages

• Caching advantages

• Prefetching

• Multiple processing elements

• Data locality

2

Delay Slot

• Pre-fetching of instructions is performed by the processor so it is not
idle waiting for instructions to be read from memory

• If an unpredicted branch/jump occurs, it may cause a pipeline bubble

• Pre-fetching of instructions may not follow the execution path even if
a processor is able to correctly predict whether a branch/jump will
occur

• MIPS deals with this issue by executing one instruction that follows a
branch/jump whether or not the branch/jump occurs
• The location of that instruction following the branch/jump is referred to as

the delay slot

3

Delay Slot Not Evident in Our MIPS Code

• We’ve been using SPIM in a default, simplified mode
• SPIM is not emulating the delay slot feature of MIPS

• Switch -delayed_branches turns delay slot emulation on

4

Pipelining

• Present the CSCI E-93 Pipelining slides

5

Caching

• Present the CSCI E-93 Caching slides

6

Types of Dependencies

• Control Dependence
• Control flow of program determines what can execute when

• Data Dependence
• Definition and use of variables determines a partial ordering

7

Control Dependencies

• Flow-of-control statements
• If-then
• If-then-else
• For
• While
• Do-while
• Switch-case
• Function call
• Return
• Goto
• Break
• Continue

8

Control Dependencies

• Flow-of-control operators
• ||

• &&

• ? :

9

Data Dependencies (1 of 3)

• True Dependence
• A variable is written and then is read

variable = …
 …
… = variable

10

Data Dependencies (2 of 3)

• Output Dependence
• A variable is written and later is written again

variable = …
 …
variable = …

• Can be removed by renaming (SSA form)

11

Data Dependencies (3 of 3)

• Anti-Dependence
• A variable is read and then written

… = variable
 …
variable = …

• Can be removed by renaming (SSA form)

12

Complications in Determining Data
Dependence
• Array accesses require analysis of the subscript expressions

• Pointer accesses require analysis of the pointers derivations
• In addition to aliasing other pointers, pointers can also alias variables of other

types

• Unions create aliases explicitly

13

Sequential Array Accesses (1 of 3)

i = 5;

j = 6;

A[j-1] = …;

… = A[i];

• Does j-1 equal i?

• Can be determined by copy propagation and constant folding

• What about across basic blocks?

14

Sequential Array Accesses (2 of 3)

void f(int i, j) {

 A[j-1] = …;

 … = A[i];

}

• Does j-1 equal i?

• Requires symbolic evaluation and inter-procedural analysis (i.e.,
analysis across the function call boundary)

15

Sequential Array Accesses (3 of 3)

void f(int i, j) {

 A[j-1] = …;

 … = A[i*3];

}

• Does j-1 equal i*3?

• Requires more complicated symbolic evaluation and inter-procedural
analysis

16

Pointer Dereferencing (1 of 4)

int A[10], *p, *q;

p = &A[0];

q = &A[1];

*p = …;

… = *q;

• Do *p and *q alias each other?

17

Pointer Dereferencing (2 of 4)

int A[10], *p, *q;

p = &A[0];

q = &A[1];

*p = …;

… = *(q-1);

• Do *p and *(q-1) alias each other?

18

Pointer Dereferencing (3 of 4)

int A[10], *p, *q;

p = &A[0];

*p = …;

q = f(…);

… = *q;

• Do *p and *q alias each other?

19

Pointer Dereferencing (4 of 4)

int i, *p;

p = &i;

…

… = i; /* First reference to i */

*p = …;

… = i; /* Second reference to i */

• Do *p and i alias each other?

• Do both references to i need to read the value of i or could i be kept in a
register?

20

Unions (1 of 3)

union union_name {

 int i;

 float f;

} var;

var.i = …;

… = var.f;

• Do var.i and var.f alias each other?

21

Unions (2 of 3)

union union_name {

 int i;

 short s;

 char c;

} var;

var.i = …;

… = var.s;

• Do var.i and var.s alias each other?

22

Unions (3 of 3)

union union_name {

 int i;

 short s[4];

 char c[6];

} var;

var.i = …;

… = var.s[2];

• Do var.i and var.s[2] alias each other?

23

Sequential Data Dependency vs. Loop-Carried
Data Dependency
• Sequential Data Dependency is directly reflected by the program

without requiring analysis of loops

• Loop-Carried Data Dependency requires analysis of loops to be
discovered

24

Simple Loop-Carried Data Dependence
Example
n = 5;

product = 1;

while(n > 1) {

 product = product*n;

 n--;

}

• Both n and product have sequential and loop-carried dependencies

25

Difficulties in Data Dependence Analysis

• Usually analysis is more difficult because of more complex data types

• Determining if a reference is to the same data as another access is the
problem of determining aliasing

• One access aliases another access, if the accesses overlap data in
memory

• Array accesses require analysis of the subscript expressions

• Pointer accesses require analysis of the pointers derivations

• Unions create aliases explicitly

26

Loop-Level Parallelism (1 of 3)

• Compute the squares of the differences between elements in two
arrays

for(i = 0; i < n; i++) {

 Z[i] = X[i] – Y[i];

 Z[i] = Z[i] * Z[i];

}

• Contains independent iterations

27

Loop-Level Parallelism (2 of 3)

• Compute the squares of the differences between elements in two arrays

for(i = 0; i < n; i++)
 Z[i] = X[i] – Y[i];
for(i = 0; i < n; i++)
 Z[i] = Z[i] * Z[i];

• Also contains independent iterations, but exhibits worse data locality than
the program fragment on the previous slide
• In the previous program fragment, operations can be performed while data is still in

registers

28

Loop-Level Parallelism (3 of 3)

• Going back to the first fragment, with M processors and with each processor
numbered p (zero origin), the previous loop can be rewritten, as follows:

b = ceil(n/M);

for(i = b*p; i < min(n, b*(p+1)); i++) {

 Z[i] = X[i] – Y[i];

 Z[i] = Z[i] * Z[i];

}

• Approximately equal size, independent iterations are created for each processor

29

FORTRAN PARALLEL DO

• FORTRAN has a PARALLEL DO statement that tells the compiler there
are no dependencies across its iterations

PARALLEL DO I = 1, N
A(I) = A(I) + B(I)

ENDDO

30

ISO C99 restrict

• ISO C99 has the restrict type qualifier for pointers to tell the compiler
there are no aliases to access the object to which it points

void add(int n, int *restrict dest, int *restrict op1, int *restrict op2) {
int i;
for(i = 0; i < n; i++)

dest[i] = op1[i] + op2[i];
}

31

Loop-Carried Dependence (1 of 7)

• Here is a slightly more complicated example of a loop-carried dependence:

double Z[100];

for(i = 0; i < 90; i++) {

 Z[i+10] = Z[i];

}

• Iteration 0 copies Z[0] into Z[10]

• Iteration 1 copies Z[1] into Z[11]

• …

• Iteration 9 copies Z[9] into Z[19]

• Iteration 10 copies Z[10] into Z[20] -- This is a true dependent on iteration 0

• Iteration 11 copies Z[11] into Z[21] -- This is a true dependent on iteration 1

• …

32

Loop-Carried Dependence (2 of 7)

• This program fragment copies the first ten locations of Z into each of
the next ten locations of Z through to the end of Z

33

Loop-Carried Dependence (3 of 7)

• This example gives us a loop-carried dependence distance of 10

• And, a dependence direction of < (which means the direction is to a
future iteration)

• These distances and directions can be computed for each nested loop
iteration variable and for each statement in the loop

• For this example, the first 10 iterations can run with no dependencies

• Then, each iteration can run so long as the iteration 10 before it has
completed

34

Loop-Carried Dependence (4 of 7)

• For which values of x and y does x+10 equal y in the range 0 <= x, y <
90?
• An exact test would tell us if there exists a solution in the specified range
• An inexact test would tell us if there exists a solution, but not necessarily in

the specified range

• This is an Integer Linear Program

• Diophantine analysis can give us an exact answer

• GCD (Greatest Common Divisor) can give us an inexact answer
• But, if GCD says NO, then that is very useful information because then there is

no integer solution even outside the specified range!

35

Diophantine Equation

• Wikipedia: A Diophantine equation is a polynomial equation, usually
in two or more unknowns, such that only the integer solutions are
sought or studied (an integer solution is a solution such that all the
unknowns take integer values)

36

Loop-Carried Dependence (5 of 7)

• Here is another example of a loop-carried dependence:

double Z[100];

for(i = 0; i < 90; i++) {

 Z[i] = Z[i+10];

}

• Iteration 0 copies Z[10] into Z[0]

• Iteration 1 copies Z[11] into Z[1]

• …

• Iteration 9 copies Z[19] into Z[9]

• Iteration 10 copies Z[20] into Z[10] -- This is anti-dependent on iteration 0

• Iteration 11 copies Z[21] into Z[11] -- This is anti-dependent on iteration 1

• …

37

Loop-Carried Dependence (6 of 7)

• Unfortunately, these anti-dependences can’t be removed by renaming
(converting into SSA form) because they are elements of an array

• This example gives us a loop-carried dependence distance of 10

• And, a dependence direction of < (which means the direction is to a future
iteration)

• Once again, for this example, the first 10 iterations can run with no
dependencies

• Then, each iteration can run so long as the iteration 10 before it has
completed

38

Loop-Carried Dependence (7 of 7)

• Here is a more complicated example of a loop-carried dependence:

double A[199];

for(i = 0; i < 99; i++) {

 A[2*i + 2] = A[2*i + 1];

}

• Let’s apply the GCD test

• 2*idest + 2 = 2*iuse + 1

• 2*idest - 2*iuse = -1

• Does gcd(2, 2) divide 1?

• No; there is no dependency

39

Greatest Common Divisor

• The greatest common divisor of a1, a2, … , an is denoted by
gcd(a1, a2, … , an)

• It is the largest integer that evenly divides all a1 through an

• Use the Euclidean Algorithm to compute GCD; see Aho, Lam, Sethi, and
Ullman, page 820 for details on the algorithm

• Theorem 11.32 in ALSU on page 819 states that
• the linear Diophantine equation

a1x1 + a2x2 + … + anxn = c
• has an integer solution for x1, x2, … , xn if and only if gcd(a1, a2, … , an) divides c

• Signs of the a terms and of c (i.e., if any of the a terms or c are negative) are
irrelevant

40

Eager Evaluation

• Execute code to evaluate an expression when the result is assigned
(bound) to a variable

• This is the usual evaluation methodology using in most programming
languages

• Eager evaluation is a straight-forward implementation of the program

41

Futures/Lazy Evaluation/Call-by-Need

• Delayed evaluation until actually needed
• Most common method of evaluation in executing Haskell programs

• Sometimes operations are performed, but only a portion of the result
is needed
• Example: array inversion, but only some elements needed

• Sometimes operations are performed, but control flow means the
result may not be used

• Side-effects (e.g., input/output) must occur when expected

• May allow infinite-size data structures to be declared

• Causes the minimal amount of computation to be performed

42

Speculative Evaluation

• Execute code in advance of being needed if resources are available

• Take advantage of idle resources

• Have result immediately available, if needed

• Either side-effects must not occur (e.g., input/output) or must be able
to be reverted or undone (e.g., changing values of variables)

• Overall more computation may be performed, but the overall time to
completion of a program can be reduced

43

Locality of Data to Processor

• In a multi-processor system, having data local to a processor is very
important
• Data in registers is fastest

• Data in memory is an order-of-magnitude slower

• Data accessed over a network is slower

• Data in mass storage is much slower

• Very important to appropriately locate data in a MIMD (Multiple
Instruction Multiple Data) computer with local memory to each
processing element

44

Task Parallelism

• Can run larger segments of code on separate processors
• These might be different function invocations
• These might be multiple independent loops

• Easy to exploit for small scale parallelization
• Not as attractive for large scale parallelization as loop iteration/data

parallelism because
• There isn’t the same degree of task parallelism
• As the size of a data set increases, task parallelism doesn’t increase
• Tasks are generally of unequal size

• Not all processors are kept busy
• Need to wait for the slowest processor

45

Data Parallelism

• For CPU intensive, long-running programs, there is a higher degree of
data parallelism

• As the size of a data set increases, data parallelism increases

• Tasks are generally of equal size
• Keeps all processors busy

• No need to wait for the last processor to complete

46

Vector/SIMD/GPU Processors

• Same operation to multiple processing elements
• SIMD == Single Instruction Multiple Data

• Compiler needs to uncover array-like operations and dole them out to
each processor

• An equally big problem is locating the data in the appropriate
processor
• What if the data is used in different ways so that sometimes one assignment

of data to processors was appropriate and other times a different assignment
was appropriate?

47

Massively-Parallel Processor (MPP)

• Extremely large number of processors (e.g., 64K)

• Exploit parallelism in large data structures
• Intended for very time-consuming computations

• Almost all very time-consuming computations deal with massive amounts of
data

• Distribute the data among the processors

• Perform (mostly) local operations on the data

• Explore C* as an example of how to program such machines

48

Data Flow Computation

• Present the Jack Dennis model of Data Flow Computation

49

	Slide 1: Dependencies, Instruction Scheduling, Optimization, and Parallelism
	Slide 2: Ordering of Execution of Instructions
	Slide 3: Delay Slot
	Slide 4: Delay Slot Not Evident in Our MIPS Code
	Slide 5: Pipelining
	Slide 6: Caching
	Slide 7: Types of Dependencies
	Slide 8: Control Dependencies
	Slide 9: Control Dependencies
	Slide 10: Data Dependencies (1 of 3)
	Slide 11: Data Dependencies (2 of 3)
	Slide 12: Data Dependencies (3 of 3)
	Slide 13: Complications in Determining Data Dependence
	Slide 14: Sequential Array Accesses (1 of 3)
	Slide 15: Sequential Array Accesses (2 of 3)
	Slide 16: Sequential Array Accesses (3 of 3)
	Slide 17: Pointer Dereferencing (1 of 4)
	Slide 18: Pointer Dereferencing (2 of 4)
	Slide 19: Pointer Dereferencing (3 of 4)
	Slide 20: Pointer Dereferencing (4 of 4)
	Slide 21: Unions (1 of 3)
	Slide 22: Unions (2 of 3)
	Slide 23: Unions (3 of 3)
	Slide 24: Sequential Data Dependency vs. Loop-Carried Data Dependency
	Slide 25: Simple Loop-Carried Data Dependence Example
	Slide 26: Difficulties in Data Dependence Analysis
	Slide 27: Loop-Level Parallelism (1 of 3)
	Slide 28: Loop-Level Parallelism (2 of 3)
	Slide 29: Loop-Level Parallelism (3 of 3)
	Slide 30: FORTRAN PARALLEL DO
	Slide 31: ISO C99 restrict
	Slide 32: Loop-Carried Dependence (1 of 7)
	Slide 33: Loop-Carried Dependence (2 of 7)
	Slide 34: Loop-Carried Dependence (3 of 7)
	Slide 35: Loop-Carried Dependence (4 of 7)
	Slide 36: Diophantine Equation
	Slide 37: Loop-Carried Dependence (5 of 7)
	Slide 38: Loop-Carried Dependence (6 of 7)
	Slide 39: Loop-Carried Dependence (7 of 7)
	Slide 40: Greatest Common Divisor
	Slide 41: Eager Evaluation
	Slide 42: Futures/Lazy Evaluation/Call-by-Need
	Slide 43: Speculative Evaluation
	Slide 44: Locality of Data to Processor
	Slide 45: Task Parallelism
	Slide 46: Data Parallelism
	Slide 47: Vector/SIMD/GPU Processors
	Slide 48: Massively-Parallel Processor (MPP)
	Slide 49: Data Flow Computation

