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Ordering of Execution of Instructions

• Although written by the programmer in a particular way, the language 
allows execution in another order so long as it meets the as-if 
constraint

• A different order may allow faster execution because of
• Delay slots

• Pipelining advantages

• Caching advantages

• Prefetching

• Multiple processing elements

• Data locality
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Delay Slot

• Pre-fetching of instructions is performed by the processor so it is not 
idle waiting for instructions to be read from memory

• If an unpredicted branch/jump occurs, it may cause a pipeline bubble

• Pre-fetching of instructions may not follow the execution path even if 
a processor is able to correctly predict whether a branch/jump will 
occur

• MIPS deals with this issue by executing one instruction that follows a 
branch/jump whether or not the branch/jump occurs
• The location of that instruction following the branch/jump is referred to as 

the delay slot
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Delay Slot Not Evident in Our MIPS Code

• We’ve been using SPIM in a default, simplified mode
• SPIM is not emulating the delay slot feature of MIPS

• Switch -delayed_branches turns delay slot emulation on
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Pipelining

• Present the CSCI E-93 Pipelining slides
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Caching

• Present the CSCI E-93 Caching slides
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Types of Dependencies

• Control Dependence
• Control flow of program determines what can execute when

• Data Dependence
• Definition and use of variables determines a partial ordering
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Control Dependencies

• Flow-of-control statements
• If-then
• If-then-else
• For
• While
• Do-while
• Switch-case
• Function call
• Return
• Goto
• Break
• Continue
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Control Dependencies

• Flow-of-control operators
• ||

• &&

• ? :
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Data Dependencies (1 of 3)

• True Dependence
• A variable is written and then is read

variable = …
 …
… = variable
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Data Dependencies (2 of 3)

• Output Dependence
• A variable is written and later is written again

variable = …
 …
variable = …

• Can be removed by renaming (SSA form)
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Data Dependencies (3 of 3)

• Anti-Dependence
• A variable is read and then written

… = variable
 …
variable = …

• Can be removed by renaming (SSA form)
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Complications in Determining Data 
Dependence
• Array accesses require analysis of the subscript expressions

• Pointer accesses require analysis of the pointers derivations
• In addition to aliasing other pointers, pointers can also alias variables of other 

types

• Unions create aliases explicitly
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Sequential Array Accesses (1 of 3)

i = 5;

j = 6;

A[j-1] = …;

… = A[i];

• Does j-1 equal i?

• Can be determined by copy propagation and constant folding

• What about across basic blocks?
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Sequential Array Accesses (2 of 3)

void f(int i, j) {

 A[j-1] = …;

 … = A[i];

}

• Does j-1 equal i?

• Requires symbolic evaluation and inter-procedural analysis (i.e., 
analysis across the function call boundary)
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Sequential Array Accesses (3 of 3)

void f(int i, j) {

 A[j-1] = …;

 … = A[i*3];

}

• Does j-1 equal i*3?

• Requires more complicated symbolic evaluation and inter-procedural 
analysis
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Pointer Dereferencing (1 of 4)

int A[10], *p, *q;

p = &A[0];

q = &A[1];

*p = …;

… = *q;

• Do *p and *q alias each other?
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Pointer Dereferencing (2 of 4)

int A[10], *p, *q;

p = &A[0];

q = &A[1];

*p = …;

… = *(q-1);

• Do *p and *(q-1) alias each other?
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Pointer Dereferencing (3 of 4)

int A[10], *p, *q;

p = &A[0];

*p = …;

q = f(…);

… = *q;

• Do *p and *q alias each other?
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Pointer Dereferencing (4 of 4)

int i, *p;

p = &i;

…

… = i;  /* First reference to i */

*p = …;

… = i;  /* Second reference to i */

• Do *p and i alias each other?

• Do both references to i need to read the value of i or could i be kept in a 
register?
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Unions (1 of 3)

union union_name {

 int i;

 float f;

} var;

var.i = …;

… = var.f;

• Do var.i and var.f alias each other?
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Unions (2 of 3)

union union_name {

 int i;

 short s;

 char c;

} var;

var.i = …;

… = var.s;

• Do var.i and var.s alias each other?
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Unions (3 of 3)

union union_name {

 int i;

 short s[4];

 char c[6];

} var;

var.i = …;

… = var.s[2];

• Do var.i and var.s[2] alias each other?
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Sequential Data Dependency vs. Loop-Carried 
Data Dependency
• Sequential Data Dependency is directly reflected by the program 

without requiring analysis of loops

• Loop-Carried Data Dependency requires analysis of loops to be 
discovered
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Simple Loop-Carried Data Dependence 
Example
n = 5;

product = 1;

while(n > 1) {

 product = product*n;

 n--;

}

• Both n and product have sequential and loop-carried dependencies
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Difficulties in Data Dependence Analysis

• Usually analysis is more difficult because of more complex data types

• Determining if a reference is to the same data as another access is the 
problem of determining aliasing

• One access aliases another access, if the accesses overlap data in 
memory

• Array accesses require analysis of the subscript expressions

• Pointer accesses require analysis of the pointers derivations

• Unions create aliases explicitly
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Loop-Level Parallelism (1 of 3)

• Compute the squares of the differences between elements in two 
arrays

for(i = 0; i < n; i++) {

 Z[i] = X[i] – Y[i];

 Z[i] = Z[i] * Z[i];

}

• Contains independent iterations
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Loop-Level Parallelism (2 of 3)

• Compute the squares of the differences between elements in two arrays

for(i = 0; i < n; i++)
 Z[i] = X[i] – Y[i];
for(i = 0; i < n; i++)
 Z[i] = Z[i] * Z[i];

• Also contains independent iterations, but exhibits worse data locality than 
the program fragment on the previous slide
• In the previous program fragment, operations can be performed while data is still in 

registers
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Loop-Level Parallelism (3 of 3)

• Going back to the first fragment, with M processors and with each processor 
numbered p (zero origin), the previous loop can be rewritten, as follows:

b = ceil(n/M);

for(i = b*p; i < min(n, b*(p+1)); i++) {

 Z[i] = X[i] – Y[i];

 Z[i] = Z[i] * Z[i];

}

• Approximately equal size, independent iterations are created for each processor
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FORTRAN PARALLEL DO

• FORTRAN has a PARALLEL DO statement that tells the compiler there 
are no dependencies across its iterations

PARALLEL DO I = 1, N
A(I) = A(I) + B(I)

ENDDO
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ISO C99 restrict

• ISO C99 has the restrict type qualifier for pointers to tell the compiler 
there are no aliases to access the object to which it points

void add(int n, int *restrict dest, int *restrict op1, int *restrict op2) {
int i;
for(i = 0; i < n; i++)

dest[i] = op1[i] + op2[i];
}
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Loop-Carried Dependence (1 of 7)

• Here is a slightly more complicated example of a loop-carried dependence:

double Z[100];

for(i = 0; i < 90; i++) {

 Z[i+10] = Z[i];

}

• Iteration 0 copies Z[0] into Z[10]

• Iteration 1 copies Z[1] into Z[11]

• …

• Iteration 9 copies Z[9] into Z[19]

• Iteration 10 copies Z[10] into Z[20] -- This is a true dependent on iteration 0

• Iteration 11 copies Z[11] into Z[21] -- This is a true dependent on iteration 1

• …
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Loop-Carried Dependence (2 of 7)

• This program fragment copies the first ten locations of Z into each of 
the next ten locations of Z through to the end of Z
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Loop-Carried Dependence (3 of 7)

• This example gives us a loop-carried dependence distance of 10

• And, a dependence direction of < (which means the direction is to a 
future iteration)

• These distances and directions can be computed for each nested loop 
iteration variable and for each statement in the loop

• For this example, the first 10 iterations can run with no dependencies

• Then, each iteration can run so long as the iteration 10 before it has 
completed
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Loop-Carried Dependence (4 of 7)

• For which values of x and y does x+10 equal y in the range 0 <= x, y < 
90?
• An exact test would tell us if there exists a solution in the specified range
• An inexact test would tell us if there exists a solution, but not necessarily in 

the specified range

• This is an Integer Linear Program

• Diophantine analysis can give us an exact answer

• GCD (Greatest Common Divisor) can give us an inexact answer
• But, if GCD says NO, then that is very useful information because then there is 

no integer solution even outside the specified range!
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Diophantine Equation

• Wikipedia: A Diophantine equation is a polynomial equation, usually 
in two or more unknowns, such that only the integer solutions are 
sought or studied (an integer solution is a solution such that all the 
unknowns take integer values)
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Loop-Carried Dependence (5 of 7)

• Here is another example of a loop-carried dependence:

double Z[100];

for(i = 0; i < 90; i++) {

 Z[i] = Z[i+10];

}

• Iteration 0 copies Z[10] into Z[0]

• Iteration 1 copies Z[11] into Z[1]

• …

• Iteration 9 copies Z[19] into Z[9]

• Iteration 10 copies Z[20] into Z[10] -- This is anti-dependent on iteration 0

• Iteration 11 copies Z[21] into Z[11] -- This is anti-dependent on iteration 1

• …
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Loop-Carried Dependence (6 of 7)

• Unfortunately, these anti-dependences can’t be removed by renaming 
(converting into SSA form) because they are elements of an array

• This example gives us a loop-carried dependence distance of 10

• And, a dependence direction of < (which means the direction is to a future 
iteration)

• Once again, for this example, the first 10 iterations can run with no 
dependencies

• Then, each iteration can run so long as the iteration 10 before it has 
completed
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Loop-Carried Dependence (7 of 7)

• Here is a more complicated example of a loop-carried dependence:

double A[199];

for(i = 0; i < 99; i++) {

 A[2*i + 2] = A[2*i + 1];

}

• Let’s apply the GCD test

• 2*idest + 2 = 2*iuse + 1

• 2*idest - 2*iuse = -1

• Does gcd(2, 2) divide 1?

• No; there is no dependency
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Greatest Common Divisor

• The greatest common divisor of a1, a2, … , an is denoted by
gcd(a1, a2, … , an)

• It is the largest integer that evenly divides all a1 through an

• Use the Euclidean Algorithm to compute GCD; see Aho, Lam, Sethi, and 
Ullman, page 820 for details on the algorithm

• Theorem 11.32 in ALSU on page 819 states that
• the linear Diophantine equation

a1x1 + a2x2 + … + anxn = c
• has an integer solution for x1, x2, … , xn if and only if gcd(a1, a2, … , an) divides c

• Signs of the a terms and of c (i.e., if any of the a terms or c are negative) are 
irrelevant

40



Eager Evaluation

• Execute code to evaluate an expression when the result is assigned 
(bound) to a variable

• This is the usual evaluation methodology using in most programming 
languages

• Eager evaluation is a straight-forward implementation of the program
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Futures/Lazy Evaluation/Call-by-Need

• Delayed evaluation until actually needed
• Most common method of evaluation in executing Haskell programs

• Sometimes operations are performed, but only a portion of the result 
is needed
• Example: array inversion, but only some elements needed

• Sometimes operations are performed, but control flow means the 
result may not be used

• Side-effects (e.g., input/output) must occur when expected

• May allow infinite-size data structures to be declared

• Causes the minimal amount of computation to be performed

42



Speculative Evaluation

• Execute code in advance of being needed if resources are available

• Take advantage of idle resources

• Have result immediately available, if needed

• Either side-effects must not occur (e.g., input/output) or must be able 
to be reverted or undone (e.g., changing values of variables)

• Overall more computation may be performed, but the overall time to 
completion of a program can be reduced
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Locality of Data to Processor

• In a multi-processor system, having data local to a processor is very 
important
• Data in registers is fastest

• Data in memory is an order-of-magnitude slower

• Data accessed over a network is slower

• Data in mass storage is much slower

• Very important to appropriately locate data in a MIMD (Multiple 
Instruction Multiple Data) computer with local memory to each 
processing element
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Task Parallelism

• Can run larger segments of code on separate processors
• These might be different function invocations
• These might be multiple independent loops

• Easy to exploit for small scale parallelization
• Not as attractive for large scale parallelization as loop iteration/data 

parallelism because
• There isn’t the same degree of task parallelism
• As the size of a data set increases, task parallelism doesn’t increase
• Tasks are generally of unequal size

• Not all processors are kept busy
• Need to wait for the slowest processor
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Data Parallelism

• For CPU intensive, long-running programs, there is a higher degree of 
data parallelism

• As the size of a data set increases, data parallelism increases

• Tasks are generally of equal size
• Keeps all processors busy

• No need to wait for the last processor to complete
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Vector/SIMD/GPU Processors

• Same operation to multiple processing elements
• SIMD == Single Instruction Multiple Data

• Compiler needs to uncover array-like operations and dole them out to 
each processor

• An equally big problem is locating the data in the appropriate 
processor
• What if the data is used in different ways so that sometimes one assignment 

of data to processors was appropriate and other times a different assignment 
was appropriate?
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Massively-Parallel Processor (MPP)

• Extremely large number of processors (e.g., 64K)

• Exploit parallelism in large data structures
• Intended for very time-consuming computations

• Almost all very time-consuming computations deal with massive amounts of 
data

• Distribute the data among the processors

• Perform (mostly) local operations on the data

• Explore C* as an example of how to program such machines
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Data Flow Computation

• Present the Jack Dennis model of Data Flow Computation
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