Dependencies, Instruction
Scheduling, Optimization, and
Parallelism

Prof. James L. Frankel
Harvard University

Ordering of Execution of Instructions

e Although written by the programmer in a particular way, the language
allows execution in another order so long as it meets the as-if
constraint

* A different order may allow faster execution because of
* Delay slots
* Pipelining advantages

Caching advantages

Prefetching

Multiple processing elements

Data locality

Delay Slot

* Pre-fetching of instructions is performed by the processor so it is not
idle waiting for instructions to be read from memory

* If an unpredicted branch/jump occurs, it may cause a pipeline bubble

* Pre-fetching of instructions may not follow the execution path even if
a processor is able to correctly predict whether a branch/jump will
occur

* MIPS deals with this issue by executing one instruction that follows a
branch/jump whether or not the branch/jump occurs

* The location of that instruction following the branch/jump is referred to as
the delay slot

Delay Slot Not Evident in Our MIPS Code

* We’ve been using SPIM in a default, simplified mode
* SPIM is not emulating the delay slot feature of MIPS

* Switch -delayed_branches turns delay slot emulation on

Pipelining

* Present the CSCI E-93 Pipelining slides

Caching

* Present the CSCI E-93 Caching slides

Types of Dependencies

* Control Dependence
* Control flow of program determines what can execute when

e Data Dependence
* Definition and use of variables determines a partial ordering

Control Dependencies

* Flow-of-control statements
* |f-then
e |f-then-else
* For
 While
* Do-while
e Switch-case
* Function call
* Return
* Goto
* Break
* Continue

Control Dependencies

* Flow-of-control operators

* |
¢ &&
° ?:

Data Dependencies (1 of 3)

* True Dependence
* A variable is written and then is read

variable = ...

... = variable

Data Dependencies (2 of 3)

* Output Dependence
* Avariable is written and later is written again

variable = ...

variable = ...

* Can be removed by renaming (SSA form)

Data Dependencies (3 of 3)

* Anti-Dependence
 Avariable is read and then written

... = variable

variable = ...

* Can be removed by renaming (SSA form)

Complications in Determining Data
Dependence

* Array accesses require analysis of the subscript expressions

* Pointer accesses require analysis of the pointers derivations
* |n addition to aliasing other pointers, pointers can also alias variables of other
types

e Unions create aliases explicitly

Sequential Array Accesses (1 of 3)

| =5;
j=6;
Alj-1] = ...;
.. = Ali];

* Does j-1 equal i?
* Can be determined by copy propagation and constant folding
* What about across basic blocks?

Sequential Array Accesses (2 of 3)

void f(int i, j) {
Alj-1] = ...;
.. = Ali];

* Does j-1 equal i?

* Requires symbolic evaluation and inter-procedural analysis (i.e.,
analysis across the function call boundary)

Sequential Array Accesses (3 of 3)

void f(int i, j) {
Alj-1] = ...;
.. = A[i*3];

* Does j-1 equal i*3?

* Requires more complicated symbolic evaluation and inter-procedural
analysis

Pointer Dereferencing (1 of 4)

int A[10], *p, *q;
p = &A[0];

q = &A[1];
*p=..;

.. = *q;

* Do *p and *q alias each other?

Pointer Dereferencing (2 of 4)

int A[10], *p, *q;
p = &A[O];

q = &A[1];
*p=..;

.. = *(q-1);

* Do *p and *(qg-1) alias each other?

Pointer Dereferencing (3 of 4)

int A[10], *p, *q;
p = &A[0O];

* Do *p and *q alias each other?

Pointer Dereferencing (4 of 4)

inti, *p;

p = &i;

R /* First referencetoi */
P=.;

AT /* Second referencetoi */

Do *p and i alias each other?

* Do both references to i need to read the value of i or could i be keptin a
register?

Unions (1 of 3)

union union_name {
int i;
float f;

} var;

var.i = ...;

... = var.f;

Do var.i and var.f alias each other?

Unions (2 of 3)

union union_name {
Int i;
short s;
char c;

} var;

var.i = ...;

... = Vvar.s;

Do var.i and var.s alias each other?

Unions (3 of 3)

union union_name {
Int i;
short s[4];
char c[6];

} var;

var.i = ...;

... =var.s[2];

e Do var.i and var.s[2] alias each other?

Sequential Data Dependency vs. Loop-Carried
Data Dependency

e Sequential Data Dependency is directly reflected by the program
without requiring analysis of loops

* Loop-Carried Data Dependency requires analysis of loops to be
discovered

Simple Loop-Carried Data Dependence
Example

n=>5;
product = 1;
while(n > 1) {

product = product™n;

n--;

* Both n and product have sequential and loop-carried dependencies

Difficulties in Data Dependence Analysis

* Usually analysis is more difficult because of more complex data types

* Determining if a reference is to the same data as another access is the
problem of determining aliasing

* One access aliases another access, if the accesses overlap data in
memory

* Array accesses require analysis of the subscript expressions
* Pointer accesses require analysis of the pointers derivations
* Unions create aliases explicitly

Loop-Level Parallelism (1 of 3)

* Compute the squares of the differences between elements in two
arrays

for(i=0;i<n;i++){
Z[i] = X[i] = Y[i];
Z[i] = Z[i] * Z[i];
}

* Contains independent iterations

Loop-Level Parallelism (2 of 3)

 Compute the squares of the differences between elements in two arrays

for(i=0;i<n;i++)
Z[i] = X[i] = YL[i];
for(i=0;i<n;i++)
Z[i] = z[i] * Z[il;

* Also contains independent iterations, but exhibits worse data locality than
the program fragment on the previous slide

* In the previous program fragment, operations can be performed while data is still in
registers

Loop-Level Parallelism (3 of 3)

* Going back to the first fragment, with M processors and with each processor
numbered p (zero origin), the previous loop can be rewritten, as follows:

b = ceil(n/M);

for(i=b*p; i < min(n, b*(p+1)); i++) {
Z[i] = X[i] = Y[il;
Z[i] = Z[i] * Z[i];

* Approximately equal size, independent iterations are created for each processor

FORTRAN PARALLEL DO

* FORTRAN has a PARALLEL DO statement that tells the compiler there
are no dependencies across its iterations

PARALLELDO I=1, N
A(l) = A(l) + B(l)
ENDDO

ISO C99 restrict

* ISO C99 has the restrict type qualifier for pointers to tell the compiler
there are no aliases to access the object to which it points

void add(int n, int *restrict dest, int *restrict opl, int *restrict op2) {
int i;
for(i=0;i<n; i++)
dest[i] = opl]i] + op2]i];
}

Loop-Carried Dependence (1 of 7)

* Hereis a slightly more complicated example of a loop-carried dependence:

double Z[100];
for(i = 0; i <90; i++) {
Z[i+10] = Z[i];

* |teration O copies Z[0] into Z[10]
* |teration 1 copies Z[1] into Z[11]

* |teration 9 copies Z[9] into Z[19]
* |teration 10 copies Z[10] into Z[20] -- This is a true dependent on iteration 0
* |teration 11 copies Z[11] into Z[21] -- This is a true dependent on iteration 1

Loop-Carried Dependence (2 of 7)

* This program fragment copies the first ten locations of Z into each of
the next ten locations of Z through to the end of Z

Loop-Carried Dependence (3 of 7)

* This example gives us a loop-carried dependence distance of 10

* And, a dependence direction of < (which means the direction is to a
future iteration)

* These distances and directions can be computed for each nested loop
iteration variable and for each statement in the loop

* For this example, the first 10 iterations can run with no dependencies

* Then, each iteration can run so long as the iteration 10 before it has
completed

Loop-Carried Dependence (4 of 7)

* For which values of x and y does x+10 equal y in the range 0 <=x, y <
907
* An exact test would tell us if there exists a solution in the specified range

* An inexact test would tell us if there exists a solution, but not necessarily in
the specified range

* This is an Integer Linear Program
* Diophantine analysis can give us an exact answer

* GCD (Greatest Common Divisor) can give us an inexact answer

e But, if GCD says NO, then that is very useful information because then there is
no integer solution even outside the specified range!

Diophantine Equation

* Wikipedia: A Diophantine equation is a polynomial equation, usually
in two or more unknowns, such that only the integer solutions are
sought or studied (an integer solution is a solution such that all the
unknowns take integer values)

Loop-Carried Dependence (5 of 7)

* Here is another example of a loop-carried dependence:

double Z[100];
for(i = 0; i <90; i++) {
Z[i] = Z[i+10];

* |teration O copies Z[10] into Z[0]
* |teration 1 copies Z[11] into Z[1]

* |teration 9 copies Z[19] into Z[9]
* |teration 10 copies Z[20] into Z[10] -- This is anti-dependent on iteration O
* |teration 11 copies Z[21] into Z[11] -- This is anti-dependent on iteration 1

Loop-Carried Dependence (6 of 7)

* Unfortunately, these anti-dependences can’t be removed by renaming
(converting into SSA form) because they are elements of an array

* This example gives us a loop-carried dependence distance of 10

* And, a dependence direction of < (which means the direction is to a future
iteration)

* Once again, for this example, the first 10 iterations can run with no
dependencies

* Then, each iteration can run so long as the iteration 10 before it has
completed

Loop-Carried Dependence (7 of 7)

* Here is a more complicated example of a loop-carried dependence:

double A[199];
for(i=0;i<99; i++) {
A[2*i + 2] = A[2*i + 1];

Let’s apply the GCD test
Z*ideSt + 2 = Q*juse 4 1

Z*ideSt - D¥juse = 1

Does gcd(2, 2) divide 17
No; there is no dependency

Greatest Common Divisor

* The greatest common divisor of a;, a,, ..., a, is denoted by
gcd(ay, a,, ..., a,)
* Itis the largest integer that evenly divides all a; through a_

* Use the Euclidean Algorithm to compute GCD; see Aho, Lam, Sethi, and
Ullman, page 820 for details on the algorithm

* Theorem 11.32 in ALSU on page 819 states that
* the linear Diophantine equation
a;X; +aX, +..+ax =cC
* has an integer solution for x, x,, ..., X, if and only if gcd(a,, a,, ..., a,) divides c

 Signs of the a terms and of c (i.e., if any of the a terms or c are negative) are
irrelevant

Fager Evaluation

* Execute code to evaluate an expression when the result is assigned
(bound) to a variable

* This is the usual evaluation methodology using in most programming
languages

e Eager evaluation is a straight-forward implementation of the program

Futures/Lazy Evaluation/Call-by-Need

* Delayed evaluation until actually needed
* Most common method of evaluation in executing Haskell programs

* Sometimes operations are performed, but only a portion of the result
is needed

* Example: array inversion, but only some elements needed

* Sometimes operations are performed, but control flow means the
result may not be used

* Side-effects (e.g., input/output) must occur when expected
* May allow infinite-size data structures to be declared
e Causes the minimal amount of computation to be performed

Speculative Evaluation

* Execute code in advance of being needed if resources are available
* Take advantage of idle resources
* Have result immediately available, if needed

e Either side-effects must not occur (e.g., input/output) or must be able
to be reverted or undone (e.g., changing values of variables)

* Overall more computation may be performed, but the overall time to
completion of a program can be reduced

Locality of Data to Processor

* In a multi-processor system, having data local to a processor is very
Important
* Data in registers is fastest
* Data in memory is an order-of-magnitude slower
* Data accessed over a network is slower
e Data in mass storage is much slower

* VVery important to appropriately locate data in a MIMD (Multiple
Instruction Multiple Data) computer with local memory to each
processing element

Task Parallelism

* Can run larger segments of code on separate processors
* These might be different function invocations
* These might be multiple independent loops

* Easy to exploit for small scale parallelization

* Not as attractive for large scale parallelization as loop iteration/data
parallelism because
* There isn’t the same degree of task parallelism
* As the size of a data set increases, task parallelism doesn’t increase
» Tasks are generally of unequal size

* Not all processors are kept busy
* Need to wait for the slowest processor

Data Parallelism

* For CPU intensive, long-running programs, there is a higher degree of
data parallelism

* As the size of a data set increases, data parallelism increases

* Tasks are generally of equal size
* Keeps all processors busy
* No need to wait for the last processor to complete

Vector/SIMD/GPU Processors

* Same operation to multiple processing elements
e SIMD == Single Instruction Multiple Data

 Compiler needs to uncover array-like operations and dole them out to
each processor

* An equally big problem is locating the data in the appropriate
processor
 What if the data is used in different ways so that sometimes one assignment

of data to processors was appropriate and other times a different assignment
was appropriate?

Massively-Parallel Processor (MPP)

* Extremely large number of processors (e.g., 64K)

* Exploit parallelism in large data structures
* Intended for very time-consuming computations

* Almost all very time-consuming computations deal with massive amounts of
data

* Distribute the data among the processors
e Perform (mostly) local operations on the data

* Explore C* as an example of how to program such machines

Data Flow Computation

* Present the Jack Dennis model of Data Flow Computation

	Slide 1: Dependencies, Instruction Scheduling, Optimization, and Parallelism
	Slide 2: Ordering of Execution of Instructions
	Slide 3: Delay Slot
	Slide 4: Delay Slot Not Evident in Our MIPS Code
	Slide 5: Pipelining
	Slide 6: Caching
	Slide 7: Types of Dependencies
	Slide 8: Control Dependencies
	Slide 9: Control Dependencies
	Slide 10: Data Dependencies (1 of 3)
	Slide 11: Data Dependencies (2 of 3)
	Slide 12: Data Dependencies (3 of 3)
	Slide 13: Complications in Determining Data Dependence
	Slide 14: Sequential Array Accesses (1 of 3)
	Slide 15: Sequential Array Accesses (2 of 3)
	Slide 16: Sequential Array Accesses (3 of 3)
	Slide 17: Pointer Dereferencing (1 of 4)
	Slide 18: Pointer Dereferencing (2 of 4)
	Slide 19: Pointer Dereferencing (3 of 4)
	Slide 20: Pointer Dereferencing (4 of 4)
	Slide 21: Unions (1 of 3)
	Slide 22: Unions (2 of 3)
	Slide 23: Unions (3 of 3)
	Slide 24: Sequential Data Dependency vs. Loop-Carried Data Dependency
	Slide 25: Simple Loop-Carried Data Dependence Example
	Slide 26: Difficulties in Data Dependence Analysis
	Slide 27: Loop-Level Parallelism (1 of 3)
	Slide 28: Loop-Level Parallelism (2 of 3)
	Slide 29: Loop-Level Parallelism (3 of 3)
	Slide 30: FORTRAN PARALLEL DO
	Slide 31: ISO C99 restrict
	Slide 32: Loop-Carried Dependence (1 of 7)
	Slide 33: Loop-Carried Dependence (2 of 7)
	Slide 34: Loop-Carried Dependence (3 of 7)
	Slide 35: Loop-Carried Dependence (4 of 7)
	Slide 36: Diophantine Equation
	Slide 37: Loop-Carried Dependence (5 of 7)
	Slide 38: Loop-Carried Dependence (6 of 7)
	Slide 39: Loop-Carried Dependence (7 of 7)
	Slide 40: Greatest Common Divisor
	Slide 41: Eager Evaluation
	Slide 42: Futures/Lazy Evaluation/Call-by-Need
	Slide 43: Speculative Evaluation
	Slide 44: Locality of Data to Processor
	Slide 45: Task Parallelism
	Slide 46: Data Parallelism
	Slide 47: Vector/SIMD/GPU Processors
	Slide 48: Massively-Parallel Processor (MPP)
	Slide 49: Data Flow Computation

